摘要
In this paper, we propose a convolutional fuzzy neural network classification to alleviate the problems of processing high-dimensional data and low computational efficiency in traditional convolutional neural networks. The model proposes a convolution fuzzy C-means algorithm, in the meanwhile uses the L2-norm regularization method to estimate parameters, so that it has better generalization ability. The experimental results indicate that the proposed CFNNCs have excellent performance in classification accuracy than classic classification models such as SVM, RVM, KNN, and the experimental accuracy can be maintained above 90%.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 306-309 |
页数 | 4 |
ISBN(电子版) | 9781728191461 |
DOI | |
出版状态 | 已出版 - 10月 2020 |
已对外发布 | 是 |
活动 | 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 - Beijing, 中国 期限: 23 10月 2020 → 25 10月 2020 |
出版系列
姓名 | Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 |
---|
会议
会议 | 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 |
---|---|
国家/地区 | 中国 |
市 | Beijing |
时期 | 23/10/20 → 25/10/20 |
指纹
探究 'Design of Convolutional Fuzzy Neural Network Classifiers' 的科研主题。它们共同构成独一无二的指纹。引用此
Men, J., Huang, W., & Wang, J. (2020). Design of Convolutional Fuzzy Neural Network Classifiers. 在 Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 (页码 306-309). 文章 9361333 (Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICAICE51518.2020.00065