Design of Convolutional Fuzzy Neural Network Classifiers

Jiying Men, Wei Huang*, Jinsong Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we propose a convolutional fuzzy neural network classification to alleviate the problems of processing high-dimensional data and low computational efficiency in traditional convolutional neural networks. The model proposes a convolution fuzzy C-means algorithm, in the meanwhile uses the L2-norm regularization method to estimate parameters, so that it has better generalization ability. The experimental results indicate that the proposed CFNNCs have excellent performance in classification accuracy than classic classification models such as SVM, RVM, KNN, and the experimental accuracy can be maintained above 90%.

源语言英语
主期刊名Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020
出版商Institute of Electrical and Electronics Engineers Inc.
306-309
页数4
ISBN(电子版)9781728191461
DOI
出版状态已出版 - 10月 2020
已对外发布
活动2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020 - Beijing, 中国
期限: 23 10月 202025 10月 2020

出版系列

姓名Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020

会议

会议2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020
国家/地区中国
Beijing
时期23/10/2025/10/20

指纹

探究 'Design of Convolutional Fuzzy Neural Network Classifiers' 的科研主题。它们共同构成独一无二的指纹。

引用此