Deep-IRTarget: An Automatic Target Detector in Infrared Imagery Using Dual-Domain Feature Extraction and Allocation

Ruiheng Zhang, Lixin Xu, Zhengyu Yu, Ye Shi, Chengpo Mu, Min Xu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

95 引用 (Scopus)

摘要

Recently, convolutional neural networks (CNNs) have brought impressive improvements for object detection. However, detecting targets in infrared images still remains challenging, because the poor texture information, low resolution and high noise levels of the thermal imagery restrict the feature extraction ability of CNNs. In order to deal with these difficulties in the feature extraction, we propose a novel backbone network named Deep-IRTarget, composing of a frequency feature extractor, a spatial feature extractor and a dual-domain feature resource allocation model. Hypercomplex Infrared Fourier Transform is developed to calculate the infrared intensity saliency by designing hypercomplex representations in the frequency domain, while a convolutional neural network is invoked to extract feature maps in the spatial domain. Features from the frequency domain and spatial domain are stacked to construct Dual-domain features. To efficiently integrate and recalibrate them, we propose a Resource Allocation model for Features (RAF). The well-designed channel attention block and position attention block are used in RAF to respectively extract interdependent relationships among channel and position dimensions, and capture channel-wise and position-wise contextual information. Extensive experiments are conducted on three challenging infrared imagery databases. We achieve 10.14%, 9.1% and 8.05% improvement on mAP scores, compared to the current state of the art method on MWIR, BITIR and WCIR respectively.

源语言英语
页(从-至)1735-1749
页数15
期刊IEEE Transactions on Multimedia
24
DOI
出版状态已出版 - 2022

指纹

探究 'Deep-IRTarget: An Automatic Target Detector in Infrared Imagery Using Dual-Domain Feature Extraction and Allocation' 的科研主题。它们共同构成独一无二的指纹。

引用此