摘要
Feature recommendation is one of the most critical and challenging problems in modern digital intelligence system. However, it is difficult to ensure privacy protection in many situations. To address this challenge, a deep federated feature recommendation method, called DF_Rec, is designed. Particularly, deep decentralized federated aggregation learning (DFAL) is jointly developed based on the ingenious combination of several deep frameworks and federated aggregation schemes. Extensive experiments are performed on three authoritative datasets, demonstrating that DF_Rec outperforms existing outstanding systems significantly.
源语言 | 英语 |
---|---|
主期刊名 | Electronics, Communications and Networks - Proceedings of the 13th International Conference, CECNet 2023 |
编辑 | Antonio J. Tallon-Ballesteros, Estefania Cortes-Ancos, Diego A. Lopez-Garcia |
出版商 | IOS Press BV |
页 | 644-649 |
页数 | 6 |
ISBN(电子版) | 9781643684802 |
DOI | |
出版状态 | 已出版 - 12 1月 2024 |
已对外发布 | 是 |
活动 | 13th International Conference on Electronics, Communications and Networks, CECNet 2023 - Hybrid, Macau, 中国 期限: 17 11月 2023 → 20 11月 2023 |
出版系列
姓名 | Frontiers in Artificial Intelligence and Applications |
---|---|
卷 | 381 |
ISSN(印刷版) | 0922-6389 |
ISSN(电子版) | 1879-8314 |
会议
会议 | 13th International Conference on Electronics, Communications and Networks, CECNet 2023 |
---|---|
国家/地区 | 中国 |
市 | Hybrid, Macau |
时期 | 17/11/23 → 20/11/23 |
指纹
探究 'Deep Federated Feature Recommendation' 的科研主题。它们共同构成独一无二的指纹。引用此
Xue, B., Zheng, Q., Li, Z., Zhao, W., Zhang, W., & Feng, X. (2024). Deep Federated Feature Recommendation. 在 A. J. Tallon-Ballesteros, E. Cortes-Ancos, & D. A. Lopez-Garcia (编辑), Electronics, Communications and Networks - Proceedings of the 13th International Conference, CECNet 2023 (页码 644-649). (Frontiers in Artificial Intelligence and Applications; 卷 381). IOS Press BV. https://doi.org/10.3233/FAIA231248