摘要
In this letter, we characterize a data-time tradeoff for projected gradient descent (PGD) algorithms used for solving corrupted sensing problems under sub-Gaussian measurements. We also show that with a proper step size, the PGD method can achieve a linear rate of convergence when the number of measurements is sufficiently large.
源语言 | 英语 |
---|---|
页(从-至) | 941-945 |
页数 | 5 |
期刊 | IEEE Signal Processing Letters |
卷 | 25 |
期 | 7 |
DOI | |
出版状态 | 已出版 - 7月 2018 |
引用此
Chen, J., & Liu, Y. (2018). Data-Time Tradeoffs for Corrupted Sensing. IEEE Signal Processing Letters, 25(7), 941-945. https://doi.org/10.1109/LSP.2018.2833428