摘要
This paper presents the concepts of (L, M)-remotehood spaces and (L, M)-convergence spaces in the framework of (L, M)-fuzzy convex spaces. Firstly, it is shown that the category of (L, M)-remotehood spaces is isomorphic to the category of (L, M)-fuzzy convex spaces. Secondly, it is proved that the category of (L, M)-fuzzy convex spaces can be embedded in the category of (L, M)-convergence spaces as a reflective subcategory. Finally, the concepts of preconvex (L, M)-remotehood spaces and preconvex (L, M)-convergence spaces are introduced and it is shown that the category of preconvex (L, M)-remotehood spaces is isomorphic to the category of preconvex (L, M)-convergence spaces.
源语言 | 英语 |
---|---|
页(从-至) | 2859-2877 |
页数 | 19 |
期刊 | Filomat |
卷 | 37 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 2023 |
指纹
探究 'Convergence structures in (L, M)-fuzzy convex spaces' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, L., & Pang, B. (2023). Convergence structures in (L, M)-fuzzy convex spaces. Filomat, 37(9), 2859-2877. https://doi.org/10.2298/FIL2309859Z