Configuration Design and Optimal Energy Management for Coupled-Split Powertrain Tractor

Haishi Dou, Hongqian Wei*, Youtong Zhang, Qiang Ai

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

High-power tractors are regarded as effective operation tools in agriculture, and plugin hybrid tractors have shown potential as agricultural machinery, due to their wide application in energy conservation. However, the allocation of the output power of the motors and engine is a challenging task, given that the energy management strategy (EMS) is nonlinearly constrained. On the other hand, the structure of the continuous variable transmission (CVT) system is complicated, and affects the price of tractors. In this paper, a variable configuration of a tractor that could have the same performance as a complex CVT system is proposed. To address the EMS issues that have shown poor performance in real time, where the programming runs online, firstly a demand power prediction algorithm is proposed in a rotary tillage operation mode. Secondly, an equivalent fuel consumption minimization strategy (ECMS) is used to optimize the power distribution between the engine and the motors. In addition, the equivalent factor is optimized with an offline genetic algorithm. Thirdly, the equivalent factor is converted into a lookup table, and is used for an online power distribution with different driving mileages and state-of-charge (SOC). The simulation results indicate that the equivalent fuel consumption is reduced by 8.4% and extends the operating mileage of pure electric power. Furthermore, the error between the actual and forecasted demand power is less than 1%. The online EMS could improve the mileage of the tractor working cycle with a more feasible fuel economy based on demand power predictions.

源语言英语
文章编号1175
期刊Machines
10
12
DOI
出版状态已出版 - 12月 2022

指纹

探究 'Configuration Design and Optimal Energy Management for Coupled-Split Powertrain Tractor' 的科研主题。它们共同构成独一无二的指纹。

引用此