Compensation of FOG temperature drift based on LS-SVM modeling

Nan Li, Jiabin Chen, Yan Yuan, Yongqiang Han, Xiaochun Tian

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 5
see details

摘要

A nonlinear prediction model based on least-square support vector machine (LS-SVM) is proposed for the fiber optic gyro (FOG) temperature drift. LS-SVM is an intelligent learning machine, and is good at solving nonlinear, small samples learning problem. In the proposed LS-SVM model, the environment temperature, temperature change rate and the temperature gradient was set to be three inputs, the FOG bias drift is the expectation output. A simulated annealing algorithm (SA) is introduced to determine two important parameters in the LS-SVM model. SA is a universal random search algorithm; it provides the LS-SVM model a best prediction accuracy. Two groups of simulation with different temperature rate were carried out to evaluate the proposed algorithm. The results proved that the proposed LS-SVM model is more efficient and accuracy than the traditional BP neural network in reducing the FOG temperature drift.

源语言英语
主期刊名Proceedings of the 35th Chinese Control Conference, CCC 2016
编辑Jie Chen, Qianchuan Zhao, Jie Chen
出版商IEEE Computer Society
5515-5518
页数4
ISBN(电子版)9789881563910
DOI
出版状态已出版 - 26 8月 2016
活动35th Chinese Control Conference, CCC 2016 - Chengdu, 中国
期限: 27 7月 201629 7月 2016

出版系列

姓名Chinese Control Conference, CCC
2016-August
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议35th Chinese Control Conference, CCC 2016
国家/地区中国
Chengdu
时期27/07/1629/07/16

指纹

探究 'Compensation of FOG temperature drift based on LS-SVM modeling' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, N., Chen, J., Yuan, Y., Han, Y., & Tian, X. (2016). Compensation of FOG temperature drift based on LS-SVM modeling. 在 J. Chen, Q. Zhao, & J. Chen (编辑), Proceedings of the 35th Chinese Control Conference, CCC 2016 (页码 5515-5518). 文章 7554214 (Chinese Control Conference, CCC; 卷 2016-August). IEEE Computer Society. https://doi.org/10.1109/ChiCC.2016.7554214