CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor

Pengjie Cui, Haotian Liu, Bo Tang*, Ye Yuan*

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

3 引用 (Scopus)

摘要

In recent years, many CPU-GPU heterogeneous graph processing systems have been developed in both academic and industrial to facilitate large-scale graph processing in various applications, e.g., social networks and biological networks. However, the performance of existing systems can be significantly improved by addressing two prevailing challenges: GPU memory over-subscription and efficient CPU-GPU cooperative processing. In this work, we propose CGgraph, an ultra-fast CPU-GPU graph processing system to address these challenges. In particular, CGgraph overcomes GPU-memory over-subscription by extracting a subgraph which only needs to be loaded into GPU memory once, but its vertices and edges can be used in multiple iterations during the graph processing procedure. To support efficient CPUGPU co-processing, we design a CPU-GPU cooperative processing scheme, which balances the workloads between CPU and GPU by on-demand task allocation. To evaluate the efficiency of CGgraph, we conduct extensive experiments, comparing it with 7 state-of-the-art systems using 4 well-known graph algorithms on 6 real-world graphs. Our prototype system CGgraph outperforms all existing systems, delivering up to an order of magnitude improvement. Moreover, CGgraph on a modern commodity machine with a CPU-GPU co-processor yields superior (or at the very least, comparable) performance compared to existing systems on a high-end CPU-GPU server.

源语言英语
页(从-至)1405-1417
页数13
期刊Proceedings of the VLDB Endowment
17
6
DOI
出版状态已出版 - 2024
活动50th International Conference on Very Large Data Bases, VLDB 2024 - Guangzhou, 中国
期限: 24 8月 202429 8月 2024

指纹

探究 'CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor' 的科研主题。它们共同构成独一无二的指纹。

引用此