Causal Intervention for Abstractive Related Work Generation

Jiachang Liu, Qi Zhang, Chongyang Shi*, Usman Naseem, Shoujin Wang, Liang Hu, Ivor W. Tsang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models' generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.

源语言英语
主期刊名Findings of the Association for Computational Linguistics
主期刊副标题EMNLP 2023
出版商Association for Computational Linguistics (ACL)
2148-2159
页数12
ISBN(电子版)9798891760615
出版状态已出版 - 2023
活动2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, 新加坡
期限: 6 12月 202310 12月 2023

出版系列

姓名Findings of the Association for Computational Linguistics: EMNLP 2023

会议

会议2023 Findings of the Association for Computational Linguistics: EMNLP 2023
国家/地区新加坡
Singapore
时期6/12/2310/12/23

指纹

探究 'Causal Intervention for Abstractive Related Work Generation' 的科研主题。它们共同构成独一无二的指纹。

引用此