Carrying Out CNN Channel Pruning in a White Box

Yuxin Zhang, Mingbao Lin, Chia Wen Lin, Jie Chen, Yongjian Wu, Yonghong Tian, Rongrong Ji*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

Channel pruning has been long studied to compress convolutional neural networks (CNNs), which significantly reduces the overall computation. Prior works implement channel pruning in an unexplainable manner, which tends to reduce the final classification errors while failing to consider the internal influence of each channel. In this article, we conduct channel pruning in a white box. Through deep visualization of feature maps activated by different channels, we observe that different channels have a varying contribution to different categories in image classification. Inspired by this, we choose to preserve channels contributing to most categories. Specifically, to model the contribution of each channel to differentiating categories, we develop a class-wise mask for each channel, implemented in a dynamic training manner with respect to the input image's category. On the basis of the learned class-wise mask, we perform a global voting mechanism to remove channels with less category discrimination. Lastly, a fine-tuning process is conducted to recover the performance of the pruned model. To our best knowledge, it is the first time that CNN interpretability theory is considered to guide channel pruning. Extensive experiments on representative image classification tasks demonstrate the superiority of our White-Box over many state-of-the-arts (SOTAs). For instance, on CIFAR-10, it reduces 65.23% floating point operations per seconds (FLOPs) with even 0.62% accuracy improvement for ResNet-110. On ILSVRC-2012, White-Box achieves a 45.6% FLOP reduction with only a small loss of 0.83% in the top-1 accuracy for ResNet-50. Code is available at https://github.com/zyxxμWhite-Box.

源语言英语
页(从-至)7946-7955
页数10
期刊IEEE Transactions on Neural Networks and Learning Systems
34
10
DOI
出版状态已出版 - 1 10月 2023
已对外发布

指纹

探究 'Carrying Out CNN Channel Pruning in a White Box' 的科研主题。它们共同构成独一无二的指纹。

引用此