Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source

Yifu Wang, Ji Liu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

In this paper, we consider the quasilinear chemotaxis system (⋆){ut=∇⋅(D(u)∇u)−∇⋅(S(u)∇v)+f(u),x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0 in a bounded domain Ω⊂Rn(n≥2) under zero-flux boundary conditions, where the nonlinearities D,S∈C2([0,∞)) are supposed to generalize the prototypes D(u)=CD(u+1)m−1andS(u)=CSu(u+1)q−1 with CD,CS>0 and m,q∈R, and f∈C1([0,∞)) satisfies f(u)≤r−buγ with r≥0,b>0 and γ>1. It is shown that if [Formula presented], then (⋆) has a unique globally bounded classical solution.

源语言英语
页(从-至)113-130
页数18
期刊Nonlinear Analysis: Real World Applications
38
DOI
出版状态已出版 - 1 12月 2017

指纹

探究 'Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, Y., & Liu, J. (2017). Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source. Nonlinear Analysis: Real World Applications, 38, 113-130. https://doi.org/10.1016/j.nonrwa.2017.04.010