Bifurcation of pulsation instability in one-dimensional H2- O2 detonation with detailed reaction mechanism

Wenhu Han, Wenjin Ma, Chengeng Qian, Jennifer Wen, Cheng Wang

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Classical modes of one-dimensional (1D) detonation characterized by a simplified reaction model are reproduced by using a real chemical kinetics for the H2-O2 system with argon dilution. As Ar dilution is varied, the bifurcation points of pulsating instability are identified and a formed bifurcation diagram is compared with that obtained by the one-step reaction model. Eventually, the numerical results demonstrate that, for real detonations with detailed chemistry, the criterion of Ng et al. works well on prediction of the 1D detonation instability. Furthermore, the detonability limits are found respectively at low and high Ar dilutions. Above the high Ar dilution limit, detonations decays to the minimum level where long autoignition time and small heat release rate make reestablishment impossible for both 1D and 2D simulations. However, below the low Ar dilution limit, a 1D detonation cannot be sustained due to high instability, while the corresponding cellular detonation can propagate sustainably due to the role of transverse instability.

源语言英语
文章编号103202
期刊Physical Review Fluids
4
10
DOI
出版状态已出版 - 29 10月 2019

指纹

探究 'Bifurcation of pulsation instability in one-dimensional H2- O2 detonation with detailed reaction mechanism' 的科研主题。它们共同构成独一无二的指纹。

引用此