摘要
In this paper, we propose a bias-compensated method based on the L1-RLS algorithm and the diffusion L1-RLS algorithm for sparse system identification. Our proposed algorithms improve the estimation accuracy of traditional L1-RLS when the input data is corrupted by input noises. Furthermore, we give simulation results to verify that proposed algorithms have better estimation accuracy than other sparse RLS algorithms without bias compensation, it also proves that results are unbiased under input noises.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings of the 41st Chinese Control Conference, CCC 2022 |
编辑 | Zhijun Li, Jian Sun |
出版商 | IEEE Computer Society |
页 | 3138-3143 |
页数 | 6 |
ISBN(电子版) | 9789887581536 |
DOI | |
出版状态 | 已出版 - 2022 |
活动 | 41st Chinese Control Conference, CCC 2022 - Hefei, 中国 期限: 25 7月 2022 → 27 7月 2022 |
出版系列
姓名 | Chinese Control Conference, CCC |
---|---|
卷 | 2022-July |
ISSN(印刷版) | 1934-1768 |
ISSN(电子版) | 2161-2927 |
会议
会议 | 41st Chinese Control Conference, CCC 2022 |
---|---|
国家/地区 | 中国 |
市 | Hefei |
时期 | 25/07/22 → 27/07/22 |
指纹
探究 'Bias-compensated Sparse RLS Algorithms Over Distributed Networks' 的科研主题。它们共同构成独一无二的指纹。引用此
Peng, S., Jia, L., Kanae, S., & Yang, Z. J. (2022). Bias-compensated Sparse RLS Algorithms Over Distributed Networks. 在 Z. Li, & J. Sun (编辑), Proceedings of the 41st Chinese Control Conference, CCC 2022 (页码 3138-3143). (Chinese Control Conference, CCC; 卷 2022-July). IEEE Computer Society. https://doi.org/10.23919/CCC55666.2022.9901566