跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
BearingFM: Towards a foundation model for bearing fault diagnosis by domain knowledge and contrastive learning
Zou Lai,
Chen Yang
*
, Shulin Lan
*
, Lihui Wang, Weiming Shen,
Liehuang Zhu
*
此作品的通讯作者
网络空间安全学院
Beijing Institute of Technology
University of Chinese Academy of Sciences
KTH Royal Institute of Technology
Huazhong University of Science and Technology
科研成果
:
期刊稿件
›
文章
›
同行评审
综述
指纹
指纹
探究 'BearingFM: Towards a foundation model for bearing fault diagnosis by domain knowledge and contrastive learning' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
Classification Accuracy
50%
Computing Power
50%
Contrastive Learning
100%
Data Augmentation
50%
Dimensional Space
50%
Domain Knowledge
100%
Essential Characteristic
100%
Fault Diagnosis
100%
Finished Product
50%
Learning Framework
50%
Massive Amount
50%
Neural Network Model
50%
Product Quality
50%
Semisupervised Learning
50%
Supply Chain
100%
Time Dimension
50%
vibration signal
50%
Engineering
Classification Accuracy
50%
Computing Power
50%
Conducted Experiment
50%
Dimensional Space
50%
Domain Knowledge
100%
Fault Diagnosis
100%
Limitations
50%
Network Model
50%
Product Quality
50%
Production Equipment
100%
Quality Issue
50%
Tasks
50%
Chemical Engineering
Neural Network
100%
Supervised Learning
100%