Bayesian sparse reconstruction based on dictionary learning

Yan Wang*, Jun Ke

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Imaging through thick scattering media produces a random speckle signal with wealth information, which can be restored by subsequent processing. While a moving target is hard to reconstruct by existing technology, we apply temporal Bayesian compressed sensing method to overcome this limitation. In addition, an over completed dictionary is used as a sparse base to improve the accuracy of the reconstructions. In this letter, we improve system time resolution without changing its spatial resolution and reconstruct T frame speckle images from a single temporal compressed speckle measurement.

源语言英语
主期刊名Advanced Optical Imaging Technologies III
编辑Xiao-Cong Yuan, P. Scott Carney, Kebin Shi
出版商SPIE
ISBN(电子版)9781510639133
DOI
出版状态已出版 - 2020
活动Advanced Optical Imaging Technologies III 2020 - Virtual, Online, 中国
期限: 11 10月 202016 10月 2020

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
11549
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议Advanced Optical Imaging Technologies III 2020
国家/地区中国
Virtual, Online
时期11/10/2016/10/20

指纹

探究 'Bayesian sparse reconstruction based on dictionary learning' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, Y., & Ke, J. (2020). Bayesian sparse reconstruction based on dictionary learning. 在 X.-C. Yuan, P. S. Carney, & K. Shi (编辑), Advanced Optical Imaging Technologies III 文章 115491L (Proceedings of SPIE - The International Society for Optical Engineering; 卷 11549). SPIE. https://doi.org/10.1117/12.2575180