TY - JOUR
T1 - b-Generalized Skew Derivations on Lie Ideals
AU - De Filippis, Vincenzo
AU - Wei, Feng
N1 - Publisher Copyright:
© 2018, Springer International Publishing AG, part of Springer Nature.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, F≠ 0 an b-generalized skew derivation of R, L a non-central Lie ideal of R, 0 ≠ a∈ R and n≥ 1 a fixed integer. In this paper, we prove the following two results:1.If R has characteristic different from 2 and 3 and a[ F(x) , x] n= 0 , for all x∈ L, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4) , the standard identity of degree 4, and there exist λ∈ C and b∈ Q, such that F(x) = bx+ xb+ λx, for all x∈ R.2.If char (R) = 0 or char (R) > n and a[ F(x) , x] n∈ Z(R) , for all x∈ R, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4).
AB - Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, F≠ 0 an b-generalized skew derivation of R, L a non-central Lie ideal of R, 0 ≠ a∈ R and n≥ 1 a fixed integer. In this paper, we prove the following two results:1.If R has characteristic different from 2 and 3 and a[ F(x) , x] n= 0 , for all x∈ L, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4) , the standard identity of degree 4, and there exist λ∈ C and b∈ Q, such that F(x) = bx+ xb+ λx, for all x∈ R.2.If char (R) = 0 or char (R) > n and a[ F(x) , x] n∈ Z(R) , for all x∈ R, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4).
KW - Generalized skew derivation
KW - Lie ideal
KW - Prime ring
UR - http://www.scopus.com/inward/record.url?scp=85044195384&partnerID=8YFLogxK
U2 - 10.1007/s00009-018-1103-2
DO - 10.1007/s00009-018-1103-2
M3 - Article
AN - SCOPUS:85044195384
SN - 1660-5446
VL - 15
JO - Mediterranean Journal of Mathematics
JF - Mediterranean Journal of Mathematics
IS - 2
M1 - 65
ER -