b-Generalized Skew Derivations on Lie Ideals

Vincenzo De Filippis*, Feng Wei

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, F≠ 0 an b-generalized skew derivation of R, L a non-central Lie ideal of R, 0 ≠ a∈ R and n≥ 1 a fixed integer. In this paper, we prove the following two results:1.If R has characteristic different from 2 and 3 and a[ F(x) , x] n= 0 , for all x∈ L, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4) , the standard identity of degree 4, and there exist λ∈ C and b∈ Q, such that F(x) = bx+ xb+ λx, for all x∈ R.2.If char (R) = 0 or char (R) > n and a[ F(x) , x] n∈ Z(R) , for all x∈ R, then either there exists an element λ∈ C, such that F(x) = λx, for all x∈ R or R satisfies s4(x1, … , x4).

源语言英语
文章编号65
期刊Mediterranean Journal of Mathematics
15
2
DOI
出版状态已出版 - 1 4月 2018

指纹

探究 'b-Generalized Skew Derivations on Lie Ideals' 的科研主题。它们共同构成独一无二的指纹。

引用此