Autoeval: An evaluation methodology for evaluating query suggestions using query logs

M. Dyaa Albakour, Udo Kruschwitz, Nikolaos Nanas, Yunhyong Kim, Dawei Song, Maria Fasli, Anne De Roeck

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 10
  • Captures
    • Readers: 15
see details

摘要

User evaluations of search engines are expensive and not easy to replicate. The problem is even more pronounced when assessing adaptive search systems, for example system-generated query modification suggestions that can be derived from past user interactions with a search engine. Automatically predicting the performance of different modification suggestion models before getting the users involved is therefore highly desirable. AutoEval is an evaluation methodology that assesses the quality of query modifications generated by a model using the query logs of past user interactions with the system. We present experimental results of applying this methodology to different adaptive algorithms which suggest that the predicted quality of different algorithms is in line with user assessments. This makes AutoEval a suitable evaluation framework for adaptive interactive search engines.

源语言英语
主期刊名Advances in Information Retrieval - 33rd European Conference on IR Research, ECIR 2011, Proceedings
编辑Paul Clough, Colum Foley, Cathal Gurrin, Hyowon Lee, Gareth J.F. Jones, Wessel Kraaij, Vanessa Murdoch
出版商Springer Verlag
605-610
页数6
ISBN(印刷版)9783642201608
DOI
出版状态已出版 - 2011
已对外发布
活动33rd European Conference on Information Retrieval, ECIR 2011 - Dublin, 爱尔兰
期限: 18 4月 201121 4月 2011

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6611 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议33rd European Conference on Information Retrieval, ECIR 2011
国家/地区爱尔兰
Dublin
时期18/04/1121/04/11

指纹

探究 'Autoeval: An evaluation methodology for evaluating query suggestions using query logs' 的科研主题。它们共同构成独一无二的指纹。

引用此

Albakour, M. D., Kruschwitz, U., Nanas, N., Kim, Y., Song, D., Fasli, M., & De Roeck, A. (2011). Autoeval: An evaluation methodology for evaluating query suggestions using query logs. 在 P. Clough, C. Foley, C. Gurrin, H. Lee, G. J. F. Jones, W. Kraaij, & V. Murdoch (编辑), Advances in Information Retrieval - 33rd European Conference on IR Research, ECIR 2011, Proceedings (页码 605-610). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 6611 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-642-20161-5_60