Asynchronous Multi-agent Pareto Optimization for Diverse UAV Maneuver Strategy Generation

Tianze Zhou, Fubiao Zhang*, Zhiwen Sun, Mingcheng Liu, Zhaoshun Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Recent advances have witnessed that Multi-Agent Reinforcement Learning (MARL) makes significant progress in Multi-UAV maneuver strategy generation. Difference from traditional MARL tasks, Multi-UAV combat scenarios are always in high dynamism and complexity, and exploring varying available maneuver strategies is necessary. In this paper, to extend the diverse maneuver strategy, we formalize the problem as the multi-objective optimization problem and propose an asynchronous Pareto-based multi-agent population optimization method. Besides, we propose the tolerance method to alleviate the Pareto front shock problem in the asynchronous Pareto optimization process. Finally, a 2V2 6-DOF UAV simulation environment is designed to evaluate the performance of the proposed methods. Experimental results show that our method can efficiently learn multiple maneuver strategies, such as counterattack and defense penetration.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2022 International Conference on Guidance, Navigation and Control
编辑Liang Yan, Haibin Duan, Yimin Deng, Liang Yan
出版商Springer Science and Business Media Deutschland GmbH
1209-1218
页数10
ISBN(印刷版)9789811966125
DOI
出版状态已出版 - 2023
活动International Conference on Guidance, Navigation and Control, ICGNC 2022 - Harbin, 中国
期限: 5 8月 20227 8月 2022

出版系列

姓名Lecture Notes in Electrical Engineering
845 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2022
国家/地区中国
Harbin
时期5/08/227/08/22

指纹

探究 'Asynchronous Multi-agent Pareto Optimization for Diverse UAV Maneuver Strategy Generation' 的科研主题。它们共同构成独一无二的指纹。

引用此