Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications

Federico Cacciafesta*, Éric Séré, Junyong Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

In this paper we prove some uniform asymptotic estimates for confluent hypergeometric functions making use of the steepest-descent method. As an application, we obtain Strichartz estimates that are (Formula presented.) -averaged over angular direction for the massless Dirac-Coulomb equation in 3D.

源语言英语
页(从-至)355-385
页数31
期刊Communications in Partial Differential Equations
48
3
DOI
出版状态已出版 - 2023

指纹

探究 'Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications' 的科研主题。它们共同构成独一无二的指纹。

引用此

Cacciafesta, F., Séré, É., & Zhang, J. (2023). Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications. Communications in Partial Differential Equations, 48(3), 355-385. https://doi.org/10.1080/03605302.2023.2169938