摘要
In this paper we prove some uniform asymptotic estimates for confluent hypergeometric functions making use of the steepest-descent method. As an application, we obtain Strichartz estimates that are (Formula presented.) -averaged over angular direction for the massless Dirac-Coulomb equation in 3D.
源语言 | 英语 |
---|---|
页(从-至) | 355-385 |
页数 | 31 |
期刊 | Communications in Partial Differential Equations |
卷 | 48 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 2023 |
指纹
探究 'Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications' 的科研主题。它们共同构成独一无二的指纹。引用此
Cacciafesta, F., Séré, É., & Zhang, J. (2023). Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications. Communications in Partial Differential Equations, 48(3), 355-385. https://doi.org/10.1080/03605302.2023.2169938