An End-to-End Model for Speech-based Somatisation Disorder Detection

Runze Ge, Zhihua Wang, Zhonghao Zhao, Kun Qian*, Bin Hu*, Björn W. Schuller, Yoshiharu Yamamoto

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Somatisation disorder is a chronic psychiatric disorder that often lacks medical explanation, which can cause more severe functional impairment and social difficulties. In non-invasive speech modalities, auxiliary diagnosis of somatisation disorder can be undertaken. In this contribution, we propose an end-to-end deep neural network that detects somatisation disorders from one-dimensional raw speech signals. Our study is based on the Shenzhen Somatisation Speech Corpus, using the Patient Health Questionnaire-15 as the evaluation scale. Moreover, ways to mitigate model overfitting are explored in this work. Our experimental results on the test set finally reach 58.4 % UAR in the binary classification task.

源语言英语
主期刊名GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
出版商Institute of Electrical and Electronics Engineers Inc.
603-605
页数3
ISBN(电子版)9798350340181
DOI
出版状态已出版 - 2023
活动12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, 日本
期限: 10 10月 202313 10月 2023

出版系列

姓名GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

会议

会议12th IEEE Global Conference on Consumer Electronics, GCCE 2023
国家/地区日本
Nara
时期10/10/2313/10/23

指纹

探究 'An End-to-End Model for Speech-based Somatisation Disorder Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此