跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
An efficient augmented Lagrangian method for support vector machine
Yinqiao Yan,
Qingna Li
*
*
此作品的通讯作者
数学学院
Beijing Institute of Technology
科研成果
:
期刊稿件
›
文章
›
同行评审
13
引用 (Scopus)
综述
指纹
指纹
探究 'An efficient augmented Lagrangian method for support vector machine' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Engineering
Support Vector Machine
100%
Lagrangian Method
100%
Newton's Method
66%
Computational Cost
33%
Convergent
33%
Regularization
33%
Jacobian matrix
33%
Loss Function
33%
Subproblem
33%
Computer Science
Support Vector Machine
100%
Newton's Method
66%
Machine Learning
33%
Computational Cost
33%
Linear Systems
33%
Regularization
33%
Support Vector
33%
Support Vector Regression
33%
Dual Problem
33%
Chemical Engineering
Support Vector Machine
100%
Learning System
33%
Linear Systems
33%
Mathematics
Loss Model
60%
Smooth Term
20%
Generalized Jacobian
20%