An Efficient Action Recognition Framework Based on ELM and 3D CNN

Yiping Zou, Xuemei Ren*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 1
see details

摘要

Deep neural network is shown to be the most efficient method for video representation and has achieved state-of-art results on different datasets of action recognition. In this paper, we proposed a hybrid architecture which integrates deep convolutional neural networks and extreme learning machine. The hybrid structure makes the most of their advantages: in the first stage the deep residual 3D network learns the features from both temporal and spatial sequences, then the ELM, instead of traditional classifiers, classifies the actions without tuning the parameters. The resulting network can not only extract the representation fully, but also obtain more accurate results faster. We show the effectiveness and outperformance of the proposed strategy on experiments.

源语言英语
主期刊名Proceedings of 2020 Chinese Intelligent Systems Conference - Volume II
编辑Yingmin Jia, Weicun Zhang, Yongling Fu
出版商Springer Science and Business Media Deutschland GmbH
641-648
页数8
ISBN(印刷版)9789811584572
DOI
出版状态已出版 - 2021
活动Chinese Intelligent Systems Conference, CISC 2020 - Shenzhen, 中国
期限: 24 10月 202025 10月 2020

出版系列

姓名Lecture Notes in Electrical Engineering
706 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议Chinese Intelligent Systems Conference, CISC 2020
国家/地区中国
Shenzhen
时期24/10/2025/10/20

指纹

探究 'An Efficient Action Recognition Framework Based on ELM and 3D CNN' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zou, Y., & Ren, X. (2021). An Efficient Action Recognition Framework Based on ELM and 3D CNN. 在 Y. Jia, W. Zhang, & Y. Fu (编辑), Proceedings of 2020 Chinese Intelligent Systems Conference - Volume II (页码 641-648). (Lecture Notes in Electrical Engineering; 卷 706 LNEE). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-15-8458-9_68