AMNet: Introducing an Adaptive Mel-Spectrogram End-to-End Neural Network for Heart Sound Classification

Yang Tan, Zhihua Wang, Kun Qian*, Zhihao Bao, Zheyu Cao, Bin Hu*, Yoshiharu Yamamoto, Bjorn W. Schuller

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The cardiovascular diseases (CVDs) cause tremendous deaths yearly. The Mel-spectrogram is widely used as a tool to analyse the heart sound, which facilitate a cheap and efficient diagnosis of CVDs. Nevertheless, the amplitude and frequency responses of the Mel filter banks remain constant, limiting its function to frequency selection. We propose an adaptive Melspectrogram end-to-end neural network (AMNet) for a better characterisation and classification of heart sound in the work. The core of the adaptive Mel-spectrograms (AMel) lies in an adaptive Mel filter banks whose frequency characteristics remain the same as the original Mel-spectrogram (OMel) and amplitude is learnt by the backropagation algorithm. The AMNet learns the raw audio representation directly and outputs the classification results. It reaches 43.5% Unweighted Average Recall (UAR) and surpasses the model with the OMel and the baseline by 6% UAR. It is demonstrated that the AMel characterises the heart sound more effectively.

源语言英语
主期刊名2023 IEEE International Conference on E-Health Networking, Application and Services, Healthcom 2023
出版商Institute of Electrical and Electronics Engineers Inc.
90-94
页数5
ISBN(电子版)9798350302301
DOI
出版状态已出版 - 2023
活动2023 IEEE International Conference on E-Health Networking, Application and Services, Healthcom 2023 - Chongqing, 中国
期限: 15 12月 202317 12月 2023

出版系列

姓名2023 IEEE International Conference on E-Health Networking, Application and Services, Healthcom 2023

会议

会议2023 IEEE International Conference on E-Health Networking, Application and Services, Healthcom 2023
国家/地区中国
Chongqing
时期15/12/2317/12/23

指纹

探究 'AMNet: Introducing an Adaptive Mel-Spectrogram End-to-End Neural Network for Heart Sound Classification' 的科研主题。它们共同构成独一无二的指纹。

引用此