Adaptive unscented Kalman filter for initial alignment of strapdown inertial navigation systems

Jun Hou Wang*, Jia Bin Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

In order to improve the performance of the unscented Kalman filter with uncertain or time-varying noise statistic, a novel adaptive unscented Kalman filter with noise statistic estimator is utilized to initial alignment on the swaying base. This noise statistic estimator makes use of the output measurement information to online update the mean and the covariance of the noise. The updated mean and covariance are further feed back into the normal unscented Kalman filter. The simulation results demonstrate that the adaptive unscented Kalman filter is superior to the unscented Kalman filter.

源语言英语
主期刊名2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010
1384-1389
页数6
DOI
出版状态已出版 - 2010
活动2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010 - Qingdao, 中国
期限: 11 7月 201014 7月 2010

出版系列

姓名2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010
3

会议

会议2010 International Conference on Machine Learning and Cybernetics, ICMLC 2010
国家/地区中国
Qingdao
时期11/07/1014/07/10

指纹

探究 'Adaptive unscented Kalman filter for initial alignment of strapdown inertial navigation systems' 的科研主题。它们共同构成独一无二的指纹。

引用此