Adaptive relevance feedback for fusion of text and visual features

Leszek Kaliciak, Hans Myrhaug, Ayse Goker, Dawei Song

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

It has been shown that query can be correlated with its context to a different extent; in this case the feedback images. We introduce an adaptive weighting scheme where the respective weights are automatically modified, depending on the relationship strength between visual query and its visual context and textual query and its textual context; the number of terms or visual terms (mid-level visual features) co-occurring between current query and its context. The user simulation experiment has shown that this kind of adaptation can indeed further improve the effectiveness of hybrid CBIR models.

源语言英语
主期刊名2015 18th International Conference on Information Fusion, Fusion 2015
出版商Institute of Electrical and Electronics Engineers Inc.
1322-1329
页数8
ISBN(电子版)9780982443866
出版状态已出版 - 14 9月 2015
已对外发布
活动18th International Conference on Information Fusion, Fusion 2015 - Washington, 美国
期限: 6 7月 20159 7月 2015

出版系列

姓名2015 18th International Conference on Information Fusion, Fusion 2015

会议

会议18th International Conference on Information Fusion, Fusion 2015
国家/地区美国
Washington
时期6/07/159/07/15

指纹

探究 'Adaptive relevance feedback for fusion of text and visual features' 的科研主题。它们共同构成独一无二的指纹。

引用此