Adaptive and Complementary Correlation Filter with Dynamic Contextual Constraints

Fan Wu, Tingfa Xu*, Lingyue Wu, Yushan Zhang, Xiangmin Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Correlation filter-based trackers have gained more and more attention because of their great performances and relative high tracking speeds. However, this kind of trackers may suffer model drifting due to learning limited background information during filter training. This may lead to tracking failures in some complex scenes, such as background clutter, deformation, illumination variation and so on. In this article, we propose an adaptive and complementary correlation filter with dynamic contextual constraints. First, we introduce contextual information around the target as a dynamic constrained term to alleviate model drifting in complex scenes, the optimal function of which can be solved by an iterative method. Then, we integrate a color histogram-based tracker to compensate the inaccurate tracking of correlation filtering. In addition, we present metrics to combine the two complementary trackers with adaptive fusion coefficients. Finally, extensive experiments on OTB2013, OTB2015, VOT2016 and UAV123 benchmark datasets demonstrate that our tracker can improve the performance of our baseline and can perform favorably against some state-of-the-art trackers.

源语言英语
文章编号9153562
页(从-至)141895-141909
页数15
期刊IEEE Access
8
DOI
出版状态已出版 - 2020

指纹

探究 'Adaptive and Complementary Correlation Filter with Dynamic Contextual Constraints' 的科研主题。它们共同构成独一无二的指纹。

引用此