摘要
Thermoelectric materials are capable of converting waste heat into electricity. Half-Heusler materials, as one of the promising candidates for thermoelectrics, have a relatively low figure of merit due to their high thermal conductivity. Here, we propose an effective strategy to lower the lattice thermal conductivity of half-Heusler materials guided by the first principles calculations and Boltzmann transport equation. The strategy was inspirited by regulating the phonon dispersion with a combination of two heavy and one light atoms, which introduced the absence of acoustic-optic phonon gap (a-o gap) and promoted the phonon-phonon scattering phase space, and therefore a small lattice thermal conductivity. Taking half-Heusler LuNiBi as an example, we found that it possessed an ultralow lattice thermal conductivity (0.7 W m−1K−1at 300 K after two-channel phonon transport model correction), which was two orders of magnitude smaller than that of usual half-Heusler materials. Our findings provide an effective strategy to design half-Heusler materials with low thermal conductivities and serve as a guide for the further improvement of the thermoelectric performance of half-Heusler compounds.
源语言 | 英语 |
---|---|
页(从-至) | 12420-12425 |
页数 | 6 |
期刊 | Journal of Materials Chemistry C |
卷 | 9 |
期 | 36 |
DOI | |
出版状态 | 已出版 - 28 9月 2021 |