A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells

Ziqi Xu, Zonghao Liu, Nengxu Li, Gang Tang, Guanhaojie Zheng, Cheng Zhu, Yihua Chen, Ligang Wang, Yuan Huang, Liang Li, Ning Zhou, Jiawang Hong, Qi Chen, Huanping Zhou*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

113 引用 (Scopus)

摘要

Crystal orientation has a great impact on the properties of perovskite films and the resultant device performance. Up to now, the exquisite control of crystal orientation (the preferred crystallographic planes and the crystal stacking mode with respect to the particular planes) in mixed-cation perovskites has received limited success, and the underlying mechanism that governs device performance is still not clear. Here, a thermodynamically favored crystal orientation in formamidinium/methylammonium (FA/MA) mixed-cation perovskites is finely tuned by composition engineering. Density functional theory calculations reveal that the FA/MA ratio affects the surface energy of the mixed perovskites, leading to the variation of preferential orientation consequently. The preferable growth along the (001) crystal plane, when lying parallel to the substrates, affects their charge transportation and collection properties. Under the optimized condition, the mixed-cation perovskite (FA1–x MAx PbI2.87Br0.13 (Cl)) solar cells deliver a champion power conversion efficiency over 21%, with a certified efficiency of 20.50 ± 0.50%. The present work not only provides a vital step in understanding the intrinsic properties of mixed-cation perovskites but also lays the foundation for further investigation and application in perovskite optoelectronics.

源语言英语
文章编号1900390
期刊Advanced Materials
31
24
DOI
出版状态已出版 - 13 6月 2019

指纹

探究 'A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells' 的科研主题。它们共同构成独一无二的指纹。

引用此