A stick-slip/inchworm hybrid rotary piezo motor based on a symmetric triangular driving mechanism

Yangkun Zhang, Meilin Wang, Yang Cheng, Dongdong Zheng, Yuxin Peng

科研成果: 期刊稿件文章同行评审

37 引用 (Scopus)

摘要

A stick-slip/inchworm hybrid rotary piezomotor based on a symmetric triangular driving mechanism, which can simultaneously achieve the benefits of both stick-slip and inchworm motors, was reported in this letter. It is based on the principle of stick-slip motors, and, inspired by the clamping-releasing actions from inchworm motors, it employs a symmetric triangular driving mechanism to generate a clamping action during the stick phase and a releasing action during the slip phase. Compared with stick-slip motors, it involves a clamping action during the stick phase and a releasing action during the slip phase, thus resulting in a larger driving force. Compared with inchworm motors, which require active control and coordination of clamping/releasing modules with feeding modules, it involves the control and operation of only one feeding piezoactuator without any actively controlled clamping/releasing module. Therefore, the control is easier, and a much larger operation frequency and driving speed can be achieved. Under the sawtooth waveform voltage of 90 V at 2600 Hz with a self-holding torque of 4 N m, the prototype achieved a no-load speed higher than 0.6 rad/s, a load torque capacity larger than 1.8 N m, and a weight carrying capacity more than 100 kg for both clockwise and anticlockwise directions. Compared with load torque capacity and weight carrying capacity in the reported stick-slip and inchworm rotary piezomotors, the current levels in terms of the same driving speed have been improved over 60 times and 12 times, respectively, in the proposed hybrid motor.

源语言英语
文章编号131904
期刊Applied Physics Letters
115
13
DOI
出版状态已出版 - 23 9月 2019
已对外发布

指纹

探究 'A stick-slip/inchworm hybrid rotary piezo motor based on a symmetric triangular driving mechanism' 的科研主题。它们共同构成独一无二的指纹。

引用此