A Review of Machine Learning Algorithms for Text Classification

Ruiguang Li*, Ming Liu, Dawei Xu, Jiaqi Gao, Fudong Wu, Liehuang Zhu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

13 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 13
  • Captures
    • Readers: 77
see details

摘要

Text classification is a basic task in the field of natural language processing, and it is a basic technology for information retrieval, questioning and answering system, emotion analysis and other advanced tasks. It is one of the earliest application of machine learning algorithm, and has achieved good results. In this paper, we made a review of the traditional and state-of-the-art machine learning algorithms for text classification, such as Naive Bayes, Supporting Vector Machine, Decision Tree, K Nearest Neighbor, Random Forest and neural networks. Then, we discussed the advantages and disadvantages of all kinds of machine learning algorithms in depth. Finally, we made a summary that neural networks and deep learning will become the main research topic in the future.

源语言英语
主期刊名Cyber Security - 18th China Annual Conference, CNCERT 2021, Revised Selected Papers
编辑Wei Lu, Yuqing Zhang, Weiping Wen, Hanbing Yan, Chao Li
出版商Springer Science and Business Media Deutschland GmbH
226-234
页数9
ISBN(印刷版)9789811692284
DOI
出版状态已出版 - 2022
活动18th China Cyber Security Annual Conference, CNCERT 2021 - Beijing, 中国
期限: 20 7月 202121 7月 2021

出版系列

姓名Communications in Computer and Information Science
1506 CCIS
ISSN(印刷版)1865-0929
ISSN(电子版)1865-0937

会议

会议18th China Cyber Security Annual Conference, CNCERT 2021
国家/地区中国
Beijing
时期20/07/2121/07/21

指纹

探究 'A Review of Machine Learning Algorithms for Text Classification' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, R., Liu, M., Xu, D., Gao, J., Wu, F., & Zhu, L. (2022). A Review of Machine Learning Algorithms for Text Classification. 在 W. Lu, Y. Zhang, W. Wen, H. Yan, & C. Li (编辑), Cyber Security - 18th China Annual Conference, CNCERT 2021, Revised Selected Papers (页码 226-234). (Communications in Computer and Information Science; 卷 1506 CCIS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-16-9229-1_14