TY - JOUR
T1 - A Preliminary Study on Grip-Induced Nerve Damage Caused by a Soft Pneumatic Elastomeric Gripper
AU - Guo, Jin
AU - Low, Jin Huat
AU - Rajagopal Iyer, Vinaya
AU - Wong, Peiyan
AU - Ong, Chee Bing
AU - Loh, Wen Lin
AU - Yeow, Chen Hua
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Forceps, clamps, and haemostats are essential surgical tools required for all surgical interventions. While they are widely used to grasp, hold, and manipulate soft tissue, their metallic rigid structure may cause tissue damage due to the potential risk of applying excessive gripping forces. Soft pneumatic surgical grippers fabricated by silicone elastomeric materials with low Young’s modulus may offer a promising solution to minimize this unintentional damage due to their inherent excellent compliance and compressibility. The goal of this work is to evaluate and compare the grip-induced nerve damage caused by the soft pneumatic elastomeric gripper and conventional haemostats during surgical manipulation. Twenty-four Wistar rats (male, seven weeks) are subjected to sciatic nerve compression (right hind limb) using the soft pneumatic elastomer gripper and haemostats. A histopathological analysis is conducted at different time-points (Day 0, Day 3, Day 7 and Day 13) after the nerve compression to examine the morphological tissue changes between the rats in the ‘soft gripper’ group and the ‘haemostats’ group. A free walking analysis is also performed to examine the walking function of the rats after recovery from different time points. Comparing the rigid haemostats and soft gripper groups, there is a visible difference in the degree of axonal vacuolar degeneration between the groups, which could suggest the presence of substantial nerve damage in the ‘haemostats’ group. The rats in the haemostats group exhibited reduced right hind paw pressure and paw size after the nerve compression. It shows that the rats tend not to exert more force on the affected right hind limb in the haemostats group compared to the soft gripper group. In addition, the stance duration was reduced in the injured right hind limb compared to the normal left hind limb in the haemostats group. These observations show that the soft pneumatic surgical gripper made of silicone elastomeric materials might reduce the severity of grip-induced damage by providing a safe compliant grip compared to the conventional haemostats. The soft pneumatic elastomer gripper could complement the current surgical gripping tool in delicate tissue manipulation.
AB - Forceps, clamps, and haemostats are essential surgical tools required for all surgical interventions. While they are widely used to grasp, hold, and manipulate soft tissue, their metallic rigid structure may cause tissue damage due to the potential risk of applying excessive gripping forces. Soft pneumatic surgical grippers fabricated by silicone elastomeric materials with low Young’s modulus may offer a promising solution to minimize this unintentional damage due to their inherent excellent compliance and compressibility. The goal of this work is to evaluate and compare the grip-induced nerve damage caused by the soft pneumatic elastomeric gripper and conventional haemostats during surgical manipulation. Twenty-four Wistar rats (male, seven weeks) are subjected to sciatic nerve compression (right hind limb) using the soft pneumatic elastomer gripper and haemostats. A histopathological analysis is conducted at different time-points (Day 0, Day 3, Day 7 and Day 13) after the nerve compression to examine the morphological tissue changes between the rats in the ‘soft gripper’ group and the ‘haemostats’ group. A free walking analysis is also performed to examine the walking function of the rats after recovery from different time points. Comparing the rigid haemostats and soft gripper groups, there is a visible difference in the degree of axonal vacuolar degeneration between the groups, which could suggest the presence of substantial nerve damage in the ‘haemostats’ group. The rats in the haemostats group exhibited reduced right hind paw pressure and paw size after the nerve compression. It shows that the rats tend not to exert more force on the affected right hind limb in the haemostats group compared to the soft gripper group. In addition, the stance duration was reduced in the injured right hind limb compared to the normal left hind limb in the haemostats group. These observations show that the soft pneumatic surgical gripper made of silicone elastomeric materials might reduce the severity of grip-induced damage by providing a safe compliant grip compared to the conventional haemostats. The soft pneumatic elastomer gripper could complement the current surgical gripping tool in delicate tissue manipulation.
KW - histopathological analysis
KW - rodent free walking analysis
KW - sciatic nerve compression
KW - silicone elastomer-based soft pneumatic actuator
KW - soft pneumatic elastomeric gripper
UR - http://www.scopus.com/inward/record.url?scp=85140899159&partnerID=8YFLogxK
U2 - 10.3390/polym14204272
DO - 10.3390/polym14204272
M3 - Article
AN - SCOPUS:85140899159
SN - 2073-4360
VL - 14
JO - Polymers
JF - Polymers
IS - 20
M1 - 4272
ER -