A novel spectral clustering algorithm

Kan Li*, Yushu Liu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In the spectral clustering algorithm, determination of cluster number is a difficult problem. Here an autonomous spectral clustering algorithm is proposed. Eigengap is used to discover the clustering stability and decide automatically the cluster number, which is proved theoretically the rationality of cluster number. A kernel based fuzzy c-means is introduced to spectral clustering algorithm. Finally our algorithm compares with c-means, Ng et.al's algorithm and Francesco et.al's algorithm in the UCI data sets(IRIS data and Wisconsin database). The experiments show our algorithm may get better results.

源语言英语
主期刊名Proceedings of the 2007 International Conference on Artificial Intelligence, ICAI 2007
365-368
页数4
出版状态已出版 - 2007
活动2007 International Conference on Artificial Intelligence, ICAI 2007 - Las Vegas, NV, 美国
期限: 25 6月 200728 6月 2007

出版系列

姓名Proceedings of the 2007 International Conference on Artificial Intelligence, ICAI 2007
1

会议

会议2007 International Conference on Artificial Intelligence, ICAI 2007
国家/地区美国
Las Vegas, NV
时期25/06/0728/06/07

指纹

探究 'A novel spectral clustering algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此