A novel multiaxial three-dimensional woven preform: Process and structure

Xinmiao Wang, Li Chen*, Junshan Wang, Xintao Li, Zhongwei Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

A novel multiaxial three-dimensional woven preform and the weaving technique have been developed in this study. The preform exhibits remarkable designs, which is formed by multiple layers of different yarn sets, including bias (+bias/−bias), warp, and filling, and all layers are locked by Z-yarns These layers are arranged in a rectangular fashion and the layer number and the position of bias layer can be determined by the end-use requirements. A weaving process and machine are proposed to produce the preform. The weaving technique enables the insertion of many warp layers between two opposite bias layers. The microstructure of the preform was also studied. Microscopic evidence of the microstructure reveals that the cross-sections of Z-yarn are variable along its central axis due to the lateral compression forces of adjacent yarns from different directions. On the basis of microscopic observation, a unit cell geometry model of multiaxial three-dimensional woven preform is established, and a good agreement has been obtained between the theoretical and experimental values of the structural parameters of woven composite samples.

源语言英语
页(从-至)247-266
页数20
期刊Journal of Reinforced Plastics and Composites
37
4
DOI
出版状态已出版 - 1 2月 2018
已对外发布

指纹

探究 'A novel multiaxial three-dimensional woven preform: Process and structure' 的科研主题。它们共同构成独一无二的指纹。

引用此