A matrix description for K 1 of graded rings

Zuhong Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The current paper is dedicated to the study of the classical K1 groups of graded rings. Let A be a Γ graded ring with identity 1, where the grading Γ is an abelian group. We associate a category with suspension to the Γ graded ring A. This allows us to construct the group valued functor K1 of graded rings. It will be denoted by K1 gr. It is not only an abelian group but also a ℤ[Γ]-module. From the construction, it follows that there exists “locally” a matrix description of K1 gr of graded rings. The matrix description makes it possible to compute K1 gr of various types of graded rings. The K1 gr satisfies the well known K-theory exact sequence (Formula presented.) for any graded ideal I of A. The above is used to compute K1 gr of cross products.

源语言英语
页(从-至)45-66
页数22
期刊Israel Journal of Mathematics
211
1
DOI
出版状态已出版 - 1 2月 2016

指纹

探究 'A matrix description for K 1 of graded rings' 的科研主题。它们共同构成独一无二的指纹。

引用此