TY - GEN
T1 - A Linear Programming Approach to the Minimum Cost Sparsest Input Selection for Structured Systems
AU - Zhang, Yuan
AU - Xia, Yuanqing
AU - Zhan, Yufeng
N1 - Publisher Copyright:
© 2022 American Automatic Control Council.
PY - 2022
Y1 - 2022
N2 - In this paper, we consider three related cost-sparsity induced optimal input selection problems for structural controllability using a unifying linear programming (LP) framework. More precisely, given an autonomous system and a constrained input configuration where whether an input can directly actuate a state variable, as well as the corresponding (possibly different) cost, is prescribed, the problems are, respectively, selecting the minimum number of input links, selecting the minimum cost of input links, and selecting the input links with the cost as small as possible while their cardinality is not exceeding a prescribed number, all to ensure structural controllability of the resulting systems. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the first and second problems are polynomially solvable by some graphtheoretic algorithms, while the general nontrivial constrained case is largely unexploited. In this paper, we formulate these problems as equivalent integer linear programming (ILP) problems. Under a weaker constraint on the prescribed input configurations than most of the currently known ones with which the first two problems are reportedly polynomially solvable, we show these ILPs can be solved by simply removing the integer constraints and solving the corresponding LP relaxations, thus providing a unifying algebraic method, rather than graph-theoretic, for these problems with polynomial time complexity. The key to our approach is the observation that the respective constraint matrices of the ILPs are totally unimodular.
AB - In this paper, we consider three related cost-sparsity induced optimal input selection problems for structural controllability using a unifying linear programming (LP) framework. More precisely, given an autonomous system and a constrained input configuration where whether an input can directly actuate a state variable, as well as the corresponding (possibly different) cost, is prescribed, the problems are, respectively, selecting the minimum number of input links, selecting the minimum cost of input links, and selecting the input links with the cost as small as possible while their cardinality is not exceeding a prescribed number, all to ensure structural controllability of the resulting systems. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the first and second problems are polynomially solvable by some graphtheoretic algorithms, while the general nontrivial constrained case is largely unexploited. In this paper, we formulate these problems as equivalent integer linear programming (ILP) problems. Under a weaker constraint on the prescribed input configurations than most of the currently known ones with which the first two problems are reportedly polynomially solvable, we show these ILPs can be solved by simply removing the integer constraints and solving the corresponding LP relaxations, thus providing a unifying algebraic method, rather than graph-theoretic, for these problems with polynomial time complexity. The key to our approach is the observation that the respective constraint matrices of the ILPs are totally unimodular.
KW - Structural controllability
KW - input selection
KW - integer programming
KW - linear programming
KW - total unimodularity
UR - http://www.scopus.com/inward/record.url?scp=85138497003&partnerID=8YFLogxK
U2 - 10.23919/ACC53348.2022.9867459
DO - 10.23919/ACC53348.2022.9867459
M3 - Conference contribution
AN - SCOPUS:85138497003
T3 - Proceedings of the American Control Conference
SP - 1453
EP - 1458
BT - 2022 American Control Conference, ACC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 American Control Conference, ACC 2022
Y2 - 8 June 2022 through 10 June 2022
ER -