A durable coating constructed by metal-organic framework and polyphosphazene for flame retardant cotton fabric with enhanced mechanical properties

Xue Bi, Xianwei Cheng, Zeqi Zhang, Yaxuan Huang, Ye Tang Pan*, Jinping Guan, Mònica Ardanuy, Rongjie Yang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

The extremely flammable cellulose macromolecules in cotton fabrics seriously affect their application in the field of flame retardancy. In this paper, the surface of cotton fabric was modified with citric acid, and then metal-organic framework (UiO-66), cationic starch (St) and polyphosphonitrile (PZS) microspheres containing the transition metal element Zr were sequentially deposited to prepare an efficient and economical cotton fabric. St-PZS double-impregnated cotton fabrics have better thermal stability, flame retardancy and mechanical properties. And the coating does not affect the whiteness and stiffness of the cotton fabric. The results of thermogravimetric analysis showed that cotton/UiO-66/2St-PZS had a higher residual char rate (25.34%) under N2 atmosphere, which was 200.1% higher than that of control cotton (8.28%). In addition, cotton/UiO-66/2St-PZS had a 46.6% reduction in peak heat release, a 31.7% reduction in total heat release, and a 35.3% reduction in the peak of CO2 production compared to control cotton. It is worth noting that the average gross calorific value is 63.3% lower than that of the control cotton, indicating that flame retardant cotton fabrics can effectively inhibit the production of flammable gases. In addition, the tensile strength and elongation at break of cotton/UiO-66/2St-PZS are 458.79 N and 11.04%, respectively. After 20 laundering cycles, the mechanical properties remained almost unchanged.

源语言英语
文章编号100143
期刊Next Materials
3
DOI
出版状态已出版 - 4月 2024

引用此