A Deep Reinforcement Learning Method for Lion and Man Problem

Jiebang Xing, Xianlin Zeng

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

David Gale's lion and man problem, which is a fundamental pursuit-evasion game, attracts the interest of many scholars. We propose a deep reinforcement learning method based on Deep Deterministic Policy Gradient (DDPG) to solve this problem. We first improve the exploration strategy by adding guided exploration and dynamic spaces exploration strategies to the greedy algorithm. Then we introduce a learning reset mechanism to help the agents escape the traps in the learning process. With these improvements, our method achieves better performance than the classic DDPG algorithm in the lion and man problem. The simulation result shows that deep reinforcement learning method may be promising to solve this problem.

源语言英语
主期刊名Proceedings of the 40th Chinese Control Conference, CCC 2021
编辑Chen Peng, Jian Sun
出版商IEEE Computer Society
8366-8371
页数6
ISBN(电子版)9789881563804
DOI
出版状态已出版 - 26 7月 2021
活动40th Chinese Control Conference, CCC 2021 - Shanghai, 中国
期限: 26 7月 202128 7月 2021

出版系列

姓名Chinese Control Conference, CCC
2021-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议40th Chinese Control Conference, CCC 2021
国家/地区中国
Shanghai
时期26/07/2128/07/21

指纹

探究 'A Deep Reinforcement Learning Method for Lion and Man Problem' 的科研主题。它们共同构成独一无二的指纹。

引用此