TY - JOUR
T1 - A bio-economic analysis of a sustainable agricultural transition using green biorefinery
AU - Cong, Rong Gang
AU - Termansen, Mette
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/11/15
Y1 - 2016/11/15
N2 - Traditional pig production often relies on cereal-based feed, which has adverse environmental effects, e.g. nitrogen leaching and greenhouse gas (GHG) emissions. Alternative production systems are therefore sought to improve the sustainability of pig production. A promising alternative is to use proteinaceous feed from grass, produced in a green bio-refinery (GBR), to substitute part of the cereals in the feed. Cultivation of grass on arable land can reduce nitrogen leaching and pesticide application, and increase carbon storage. The GBR using grass as feedstock also produces valuable byproducts, e.g. fibre and biogas. In this study we combine a life-cycle analysis (LCA) and a cost-benefit analysis to compare the economic and environmental effects of producing the pig feed to produce 1 ton of pork using two feeding systems. We apply this approach to the intensive Danish pork production as a case study. The results show that compared with traditional cereal-based feeding system for producing a ton of pork, using proteinaceous concentrate from small-scale GBR will (1) decrease the average feed cost by 5.01%; (2) produce a profit of 96 € before tax in the GBR; and (3) decrease the nitrogen leaching (NO3-N) by 28.2%. However, in most of the scenarios (except for G2), the nitrogen emissions into the air (N2O-N) will also increase because of the increased N fertilizer application compared to a cereal-based system. In most of the scenarios (except for S1 and G1), the energy and land use will also be saved. However, some important factors, e.g. the soil characteristics, pressed juice fraction in fresh biomass and scale of GBR, could subvert the conclusion about energy and land use saving in the alternative feeding system.
AB - Traditional pig production often relies on cereal-based feed, which has adverse environmental effects, e.g. nitrogen leaching and greenhouse gas (GHG) emissions. Alternative production systems are therefore sought to improve the sustainability of pig production. A promising alternative is to use proteinaceous feed from grass, produced in a green bio-refinery (GBR), to substitute part of the cereals in the feed. Cultivation of grass on arable land can reduce nitrogen leaching and pesticide application, and increase carbon storage. The GBR using grass as feedstock also produces valuable byproducts, e.g. fibre and biogas. In this study we combine a life-cycle analysis (LCA) and a cost-benefit analysis to compare the economic and environmental effects of producing the pig feed to produce 1 ton of pork using two feeding systems. We apply this approach to the intensive Danish pork production as a case study. The results show that compared with traditional cereal-based feeding system for producing a ton of pork, using proteinaceous concentrate from small-scale GBR will (1) decrease the average feed cost by 5.01%; (2) produce a profit of 96 € before tax in the GBR; and (3) decrease the nitrogen leaching (NO3-N) by 28.2%. However, in most of the scenarios (except for G2), the nitrogen emissions into the air (N2O-N) will also increase because of the increased N fertilizer application compared to a cereal-based system. In most of the scenarios (except for S1 and G1), the energy and land use will also be saved. However, some important factors, e.g. the soil characteristics, pressed juice fraction in fresh biomass and scale of GBR, could subvert the conclusion about energy and land use saving in the alternative feeding system.
KW - Biotechnology
KW - Cost-benefit analysis
KW - Greenhouse gas emissions
KW - Nitrogen leaching
KW - Proteinaceous feed
KW - Sustainable agriculture
UR - http://www.scopus.com/inward/record.url?scp=84979233753&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2016.07.137
DO - 10.1016/j.scitotenv.2016.07.137
M3 - Article
C2 - 27471980
AN - SCOPUS:84979233753
SN - 0048-9697
VL - 571
SP - 153
EP - 163
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -