TY - JOUR
T1 - 自由场空泡溃灭过程能量转化机制研究
AU - Han, Lei
AU - Zhang, Mindi
AU - Huang, Guohao
AU - Huang, Biao
N1 - Publisher Copyright:
© 2021, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.
PY - 2021/5/18
Y1 - 2021/5/18
N2 - Both the experiment method and numerical simulation method are applied in this paper to investigate the energy transformation mechanism of a gas bubble collapseing in the free field. The bubble radius, velocity and acceleration of the bubble evolution process are obtained according to the experimental results via the schlieren method. These parameters are substituted into the bubble potential energy and kinetic energy equation to explain the energy changing. By using the CFD simulation method, a three-dimensional model with reformulated mass conservation equation and momentum equation considering the weakly compressibility, is introduced to discuss the bubble collapse process. The pressure and velocity distribution around the bubble are extracted from the simulation results in order to analyze the energy transformation mechanism. The results show that (i) the relation between the potential energy and bubble radius maintains the positive correlation, with the increasing of the potential energy, the kinetic energy decreases significantly. The value of potential energy is maximum at the end of the bubble expanding, and the kinetic energy of free field returns to zero at the same time. (ii) During the shrinking stage, a high-pressure area appears around the bubble, and gradients of velocity and pressure are higher than the other area in the free field. The high-pressure area is shrinking gradually when the bubble is collapsing. (iii) The potential energy transforms into kinetic energy during the whole process of the bubble evolution, and the kinetic energy is form of wave energy. A shock wave is captured when the bubble collapse, and the most of bubble energy transform into wave energy of the shock wave at this time.
AB - Both the experiment method and numerical simulation method are applied in this paper to investigate the energy transformation mechanism of a gas bubble collapseing in the free field. The bubble radius, velocity and acceleration of the bubble evolution process are obtained according to the experimental results via the schlieren method. These parameters are substituted into the bubble potential energy and kinetic energy equation to explain the energy changing. By using the CFD simulation method, a three-dimensional model with reformulated mass conservation equation and momentum equation considering the weakly compressibility, is introduced to discuss the bubble collapse process. The pressure and velocity distribution around the bubble are extracted from the simulation results in order to analyze the energy transformation mechanism. The results show that (i) the relation between the potential energy and bubble radius maintains the positive correlation, with the increasing of the potential energy, the kinetic energy decreases significantly. The value of potential energy is maximum at the end of the bubble expanding, and the kinetic energy of free field returns to zero at the same time. (ii) During the shrinking stage, a high-pressure area appears around the bubble, and gradients of velocity and pressure are higher than the other area in the free field. The high-pressure area is shrinking gradually when the bubble is collapsing. (iii) The potential energy transforms into kinetic energy during the whole process of the bubble evolution, and the kinetic energy is form of wave energy. A shock wave is captured when the bubble collapse, and the most of bubble energy transform into wave energy of the shock wave at this time.
KW - Bubble collapse
KW - Bubble potential energy
KW - Kinetic energy of free field
KW - Wave energy
UR - http://www.scopus.com/inward/record.url?scp=85107372719&partnerID=8YFLogxK
U2 - 10.6052/0459-1879-21-006
DO - 10.6052/0459-1879-21-006
M3 - 文章
AN - SCOPUS:85107372719
SN - 0459-1879
VL - 53
SP - 1288
EP - 1301
JO - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
JF - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
IS - 5
ER -