一类连续状态非线性分枝过程的离散逼近

Pei Sen Li, Xu Yang, Xiaowen Zhou*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

In this paper we consider a general continuous-state nonlinear branching process which can be identified as a nonnegative solution to a nonlinear version of the stochastic differential equation driven by Brownian motion and Poisson random measure. Intuitively, this process is a branching process with population-size-dependent branching rates and with competition. We construct a sequence of discrete-state nonlinear branching processes and prove that it converges weakly to the continuous-state nonlinear branching process by using tightness arguments and convergence criteria on infinite-dimensional space.

投稿的翻译标题The discrete approximation of a class of continuous-state nonlinear branching processes
源语言繁体中文
页(从-至)403-414
页数12
期刊Scientia Sinica Mathematica
49
3
DOI
出版状态已出版 - 2019

关键词

  • branching process
  • nonlinear branching
  • stochastic partial differential equation
  • tightness

指纹

探究 '一类连续状态非线性分枝过程的离散逼近' 的科研主题。它们共同构成独一无二的指纹。

引用此