跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
δ-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization
Zeqiang Lai, Kaixuan Wei,
Ying Fu
, Philipp Härtel, Felix Heide
计算机学院
Beijing Institute of Technology
McGill University
Princeton University
科研成果
:
期刊稿件
›
文章
›
同行评审
4
引用 (Scopus)
综述
指纹
指纹
探究 'δ-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
Application Domain
100%
Deep Learning
33%
Deep Learning
33%
Deep Reinforcement Learning
33%
Domain Expertise
33%
Domain-Specific Modeling Language
33%
Hybrid Approach
33%
Large-Scale Optimization
100%
Lines of Code
33%
Machine Learning
33%
Memory Consumption
33%
Modeling Algorithm
100%
Neural Network
33%
Objective Function
33%
Optimisation Objective
33%
Optimization Problem
100%
Systems Planning
33%
Training Data
33%
Chemical Engineering
Deep Learning
100%
Learning System
50%
Neural Network
50%
Reinforcement Learning
50%