跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
查看 Scopus 资料
柯 钧
光电学院
h-index
440
引用
12
H-指数
根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
2005
2024
每年的科研成果
概览
指纹图谱
合作网络
科研成果
(84)
指纹图谱
深入其中 Jun Ke 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。
分类
加权
按字母排序
Engineering
Imaging Systems
100%
Compressed Sensing
54%
High Resolution
52%
Compressive Sensing
48%
Image Reconstruction
40%
Deep Learning
36%
Light Level
36%
Experimental Result
28%
Spatial Resolution
28%
Block Size
27%
Principal Components
27%
Fourier Transform
27%
Component Analysis
22%
Resolution Image
21%
Root-Mean-Squared Error
21%
Measurement Matrix
20%
Low Resolution Image
20%
Joints (Structural Components)
18%
Graphics Processing Unit
18%
Frame Object
18%
Optical Design
18%
Linear Combination
15%
Signal-to-Noise Ratio
14%
Detector Array
14%
Orthogonal Matching Pursuit
13%
Frame Rate
13%
Scattering Medium
13%
Design Matrix
13%
Sensing Method
13%
Metrics
12%
Light Source
12%
Pursuit Algorithm
12%
Super-Resolution Imaging
12%
Measurement System
11%
Image Analysis
11%
Signal Reconstruction
11%
Measurement Signal
11%
Dynamic Range
11%
Conventional Method
10%
Simulation Result
10%
Mean Square Error
10%
Limitations
10%
Convolutional Neural Network
9%
Dictionary Learning
9%
Analog Bandwidth
9%
Transmissions
9%
Mean-Squared-Error
9%
Measurement Resolution
9%
Color Coding
9%
Laser Wavelength
9%
Computer Science
Imaging Systems
58%
Image Reconstruction
40%
Compressed Sensing
39%
super resolution
36%
Spatial Resolution
31%
Experimental Result
30%
Lower Light Level
27%
Deep Learning
25%
Image Quality
22%
Scattering Medium
21%
Low Resolution Image
19%
Attention (Machine Learning)
18%
Deep Residual Network
18%
Reconstruction Error
18%
Neural Network
18%
Noise-to-Signal Ratio
17%
Systems Performance
13%
Decomposition Method
13%
Root Mean Squared Error
12%
Time Resolution
11%
Residual Neural Network
11%
Linear Combination
11%
Object Reconstruction
10%
Matrix Measurement
10%
Image Processing
10%
Dictionary Learning
9%
Good Performance
9%
Detector Array
9%
Collection Process
9%
Image Capture
9%
Reconstruction Problem
9%
reconstruction algorithm
9%
Signal Reconstruction
9%
Learning Approach
9%
Postprocessing
9%
Trained Network
9%
Error Estimation
9%
Temporal Correlation
9%
Spectral Imaging
9%
Principal Components
9%
Subsequent Processing
9%
Image Sensors
9%
Sampling Ratio
9%
Spectral Signature
9%
Super-Resolution Imaging
9%
Spatial Correlation
9%
Structured Light
9%
U-Net
9%
Computational Photography
9%
3D Convolutional Neural Networks
9%
Physics
Compressed Sensing
72%
High Resolution
47%
Deep Learning
45%
Line of Sight
27%
Neural Network
22%
Convolutional Neural Network
22%
Data Acquisition
21%
Signal-to-Noise Ratio
18%
Dynamic Range
18%
Near Infrared
18%
Laser Source
18%
Holography
18%
Optical Radar
18%
Laser Beams
14%
Gaussian Distribution
13%
Image Reconstruction
13%
Pulsed Laser
13%
Shape Function
9%
Random Noise
9%
Satellite Communication
9%
Image Analysis
9%
Optical Imaging
9%
Data Compression
9%
Bioimaging
9%
Continuous Wave Laser
9%
Noise Measurement
9%
Data Sampling
9%
Linewidth
9%
Optics
9%
Light Emitting Diode
9%
Sensor Network
9%
Photocathode
9%
Spectral Band
9%
Atmospheric Turbulence
9%
Image Classification
6%
Image Restoration
6%