TY - JOUR
T1 - Water footprint and virtual water trade analysis in water-rich basins
T2 - Case of the Chaohu Lake Basin in China
AU - Chen, Ya
AU - Wang, Yan
AU - Ding, Tao
AU - Wang, Ke
AU - Wu, Huaqing
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/10/15
Y1 - 2022/10/15
N2 - Water footprints and virtual water are widely used as essential tools for water use and conservation analysis of basins worldwide. Despite the importance of water-rich basins as the main force for water-saving, water use analysis has been mainly for water-scarce basins rather than water-rich basins in the existing literature. To fill the gap, in this paper, we investigate the water footprint and virtual water trade in a water-rich basin, namely the Chaohu Lake Basin in China, from 2007 to 2017 using input-output analysis. The results show that: (1) Water use efficiency in the Chaohu Lake Basin was significantly improved. The overall trend of the water intensity was declining, decreasing by 10.21 % in 2017 versus 2012; (2) The internal and external water footprints showed an upward trend, and the growth rate of total water footprint was 36.66 %; (3) The basin was a net virtual water exporter, but the net export flows of virtual water has decreased significantly. The virtual water net export flow decreased by 0.12 billion m3 in 2017 versus 2012; (4) Water resources in the basin were mainly used locally, and its supply to other provinces was minimal. Compared with some water-scarce basins such as the Heihe River Basin and Haihe River Basin, the Chaohu Lake Basin shows significant gaps in the virtual water export flow per capita and behaves differently in the proportion of virtual water transfer. Based on the above findings, we conclude with some guidance and implications for local governments and policymakers.
AB - Water footprints and virtual water are widely used as essential tools for water use and conservation analysis of basins worldwide. Despite the importance of water-rich basins as the main force for water-saving, water use analysis has been mainly for water-scarce basins rather than water-rich basins in the existing literature. To fill the gap, in this paper, we investigate the water footprint and virtual water trade in a water-rich basin, namely the Chaohu Lake Basin in China, from 2007 to 2017 using input-output analysis. The results show that: (1) Water use efficiency in the Chaohu Lake Basin was significantly improved. The overall trend of the water intensity was declining, decreasing by 10.21 % in 2017 versus 2012; (2) The internal and external water footprints showed an upward trend, and the growth rate of total water footprint was 36.66 %; (3) The basin was a net virtual water exporter, but the net export flows of virtual water has decreased significantly. The virtual water net export flow decreased by 0.12 billion m3 in 2017 versus 2012; (4) Water resources in the basin were mainly used locally, and its supply to other provinces was minimal. Compared with some water-scarce basins such as the Heihe River Basin and Haihe River Basin, the Chaohu Lake Basin shows significant gaps in the virtual water export flow per capita and behaves differently in the proportion of virtual water transfer. Based on the above findings, we conclude with some guidance and implications for local governments and policymakers.
KW - Chaohu Lake Basin
KW - Input-output analysis
KW - Virtual water
KW - Water footprint
KW - Water-rich basins
UR - http://www.scopus.com/inward/record.url?scp=85133192857&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.156906
DO - 10.1016/j.scitotenv.2022.156906
M3 - Article
C2 - 35753485
AN - SCOPUS:85133192857
SN - 0048-9697
VL - 843
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 156906
ER -