TY - JOUR
T1 - Vocal cord lesions classification based on deep convolutional neural network and transfer learning
AU - Zhao, Qian
AU - He, Yuqing
AU - Wu, Yanda
AU - Huang, Dongyan
AU - Wang, Yang
AU - Sun, Cai
AU - Ju, Jun
AU - Wang, Jiasen
AU - Mahr, Jeremy Jianshuo li
N1 - Publisher Copyright:
© 2021 American Association of Physicists in Medicine
PY - 2022/1
Y1 - 2022/1
N2 - Purpose: Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning. Methods: To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system. Results: Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust classification capacity for detecting urgent (keratinization, carcinoma) and non-urgent (normal, polyp), with an overall accuracy of 0.939, a sensitivity of 0.887, a specificity of 0.993, and an AUC of 0.9828. The proposed method also outperformed clinicians in the classification of normal, polyps, and carcinoma at an extremely low time cost. Conclusion: The VCLs diagnosis system succeeded in using DCNN to distinguish the most common VCLs and normal cases, holding a practical potential for improving the overall diagnostic efficacy in VCLs examinations. The proposed VCLs diagnosis system could be appropriately integrated into the conventional workflow of VCLs laryngoscopy as a highly objective auxiliary method.
AB - Purpose: Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning. Methods: To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system. Results: Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust classification capacity for detecting urgent (keratinization, carcinoma) and non-urgent (normal, polyp), with an overall accuracy of 0.939, a sensitivity of 0.887, a specificity of 0.993, and an AUC of 0.9828. The proposed method also outperformed clinicians in the classification of normal, polyps, and carcinoma at an extremely low time cost. Conclusion: The VCLs diagnosis system succeeded in using DCNN to distinguish the most common VCLs and normal cases, holding a practical potential for improving the overall diagnostic efficacy in VCLs examinations. The proposed VCLs diagnosis system could be appropriately integrated into the conventional workflow of VCLs laryngoscopy as a highly objective auxiliary method.
UR - http://www.scopus.com/inward/record.url?scp=85120781503&partnerID=8YFLogxK
U2 - 10.1002/mp.15371
DO - 10.1002/mp.15371
M3 - Article
C2 - 34813114
AN - SCOPUS:85120781503
SN - 0094-2405
VL - 49
SP - 432
EP - 442
JO - Medical Physics
JF - Medical Physics
IS - 1
ER -