Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission

Hui Qing Peng, Bin Liu, Peifa Wei, Pengfei Zhang, Haoke Zhang, Jinfeng Zhang, Kai Li, Ying Li, Yanhua Cheng, Jacky W.Y. Lam, Wenjun Zhang, Chun Sing Lee, Ben Zhong Tang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

Many highly ordered structures with smart functions are generated by self-assembly with stimuli responsiveness. Despite that electron microscopes enable us to directly observe the end products, it is hard to visualize the initial step and the kinetic stimuli-responsive behavior of self-assembly. Here, we report the design and synthesis of stereogenic amphiphiles, namely, (Z)-TPE-OEG and (E)-TPE-OEG, with aggregation-induced emission (AIE) characteristics from the hydrophobic tetraphenylethene core and thermoresponsive behavior from the hydrophilic oligoethylene glycol monomethyl ether chain. The two isomers can be easily isolated by high-performance liquid chromatography and characterized by 2D NMR spectroscopy. While (Z)-TPE-OEG self-assembles into vesicles, its (E)-cousin forms micelles in water. The initial step of their self-assembly processes can be visualized based on AIE characteristics, with a sensitivity much higher than the method based on transmittance measurement. The entrapment and release capabilities of the (Z)-stereogenic amphiphile are demonstrated by employing pyrene as a guest. The thermoresponsive behavior of the (Z)-amphiphile results in its continuous phase transition from microscopic self-assembly to macroscopic aggregation, which is successfully visualized in situ by confocal laser scanning microscopy accompanied by the AIE technique. Such a kinetic process shows different stages according to the microscopic visualization, and these stages have never been monitored through roughly observing the appearance of precipitates. It is anticipated that this study can deepen the understanding of the self-assembly processes for better monitoring and controlling them in different systems.

Original languageEnglish
Pages (from-to)839-846
Number of pages8
JournalACS Nano
Volume13
Issue number1
DOIs
Publication statusPublished - 22 Jan 2019
Externally publishedYes

Keywords

  • aggregation-induced emission
  • amphiphiles
  • microscopic visualization
  • phase transition
  • self-assembly

Fingerprint

Dive into the research topics of 'Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission'. Together they form a unique fingerprint.

Cite this