Variational integrators for forced Birkhoffian systems

Xinlei Kong*, Huibin Wu, Fengxiang Mei

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 15
  • Captures
    • Readers: 4
see details

Abstract

In this letter, we first extend the Pfaff-Birkhoff principle to include forces and obtain the Pfaff-Birkhoff-D'Alembert principle consequently. Well then motions of forced Birkhoffian systems coincide with extremals of the modified principle. Subsequently, compared with the continuous case, the discrete forced Birkhoffian equations are constructed by discretizing the Pfaff-Birkhoff-D'Alembert principle. Considered as algorithms, the discrete equations have good numerical behavior in terms of getting the correct amounts by which the energy changes over the integration process, demonstrated by the given example.

Original languageEnglish
Pages (from-to)326-332
Number of pages7
JournalApplied Mathematics and Computation
Volume225
DOIs
Publication statusPublished - 2013

Keywords

  • Discrete forced Birkhoffian equations
  • Pfaff-Birkhoff-D'Alembert principle
  • Variational integrator

Fingerprint

Dive into the research topics of 'Variational integrators for forced Birkhoffian systems'. Together they form a unique fingerprint.

Cite this

Kong, X., Wu, H., & Mei, F. (2013). Variational integrators for forced Birkhoffian systems. Applied Mathematics and Computation, 225, 326-332. https://doi.org/10.1016/j.amc.2013.09.045