Using Deep Learning to Fill Data Gaps in Environmental Footprint Accounting

Bu Zhao, Chenyang Shuai, Shen Qu, Ming Xu*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)

    Abstract

    Environmental footprint accounting relies on economic input-output (IO) models. However, the compilation of IO models is costly and time-consuming, leading to the lack of timely detailed IO data. The RAS method is traditionally used to predict future IO tables but suffers from doubts for unreliable estimations. Here we develop a machine learning-augmented method to improve the accuracy of the prediction of IO tables using the US summary-level tables as a demonstration. The model is constructed by combining the RAS method with a deep neural network (DNN) model in which the RAS method provides a baseline prediction and the DNN model makes further improvements on the areas where RAS tended to have poor performance. Our results show that the DNN model can significantly improve the performance on those areas in IO tables for short-term prediction (one year) where RAS alone has poor performance, R2 improved from 0.6412 to 0.8726, and median APE decreased from 37.49% to 11.35%. For long-term prediction (5 years), the improvements are even more significant where the R2 is improved from 0.5271 to 0.7893 and median average percentage error is decreased from 51.12% to 18.26%. Our case study on evaluating the US carbon footprint accounts based on the estimated IO table also demonstrates the applicability of the model. Our method can help generate timely IO tables to provide fundamental data for a variety of environmental footprint analyses.

    Original languageEnglish
    Pages (from-to)11897-11906
    Number of pages10
    JournalEnvironmental Science and Technology
    Volume56
    Issue number16
    DOIs
    Publication statusPublished - 16 Aug 2022

    Keywords

    • RAS
    • deep learning
    • environmental footprint
    • input-output model
    • machine learning

    Fingerprint

    Dive into the research topics of 'Using Deep Learning to Fill Data Gaps in Environmental Footprint Accounting'. Together they form a unique fingerprint.

    Cite this