Urban Digital Twins for Intelligent Road Inspection

Rui Fan*, Yikang Zhang, Sicen Guo, Jiahang Li, Yi Feng, Shuai Su, Yanting Zhang, Wenshuo Wang, Yu Jiang, Mohammud Junaid Bocus, Xingyi Zhu, Qijun Chen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Urban digital twin (UDT) technologies offer new opportunities for intelligent road inspection (IRI). This paper first reviews the state-of-the-art algorithms used in the two key components of UDT-based IRI systems: (1) multi-temporal, multi-dimension, multi-score, and heterogeneous road data acquisition, and (2) road distress detection. This paper then summarizes the UDTIRI competition, organized in conjunction with IEEE Bigdata 2022. More details on our competition are available at sites.google.com/view/udtiri-workshop/bigdata-2022.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5110-5114
Number of pages5
ISBN (Electronic)9781665480451
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: 17 Dec 202220 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022

Conference

Conference2022 IEEE International Conference on Big Data, Big Data 2022
Country/TerritoryJapan
CityOsaka
Period17/12/2220/12/22

Fingerprint

Dive into the research topics of 'Urban Digital Twins for Intelligent Road Inspection'. Together they form a unique fingerprint.

Cite this