TY - JOUR
T1 - Ultra-Wideband Dielectric Resonator Antenna Design Based on Multilayer Form
AU - Wang, Fan
AU - Zhang, Chuanfang
AU - Sun, Houjun
AU - Xiao, Yu
N1 - Publisher Copyright:
© 2019 Fan Wang et al.
PY - 2019
Y1 - 2019
N2 - In this paper, an ultra-wideband dielectric resonator antenna (DRA) is investigated. It basically covers the bandwidth from 6 GHz to 16 GHz and achieves a relative bandwidth of 90.9%. It is found that a wide bandwidth can be reached with a small DRA by adopting multilayer form. Thus, the dimension of the designed DRA element which is composed of nine-element phased-scanning linear array is as small as 6.9mm x 8.2mm x 11 mm. While the maximum stable zenith gain is 6.2dB, the lobe width is 3 dB. The operating frequency range of the antenna array is from 5.42GHz to 16.5GHz, achieving a 101.1% relative bandwidth. A large scanning angle of ±60° is realized within the operating frequency band, with good scanning pattern and cross polarization. To verify the design and simulation, a 1 × 9 DRA array is fabricated, and measurements are carried out.
AB - In this paper, an ultra-wideband dielectric resonator antenna (DRA) is investigated. It basically covers the bandwidth from 6 GHz to 16 GHz and achieves a relative bandwidth of 90.9%. It is found that a wide bandwidth can be reached with a small DRA by adopting multilayer form. Thus, the dimension of the designed DRA element which is composed of nine-element phased-scanning linear array is as small as 6.9mm x 8.2mm x 11 mm. While the maximum stable zenith gain is 6.2dB, the lobe width is 3 dB. The operating frequency range of the antenna array is from 5.42GHz to 16.5GHz, achieving a 101.1% relative bandwidth. A large scanning angle of ±60° is realized within the operating frequency band, with good scanning pattern and cross polarization. To verify the design and simulation, a 1 × 9 DRA array is fabricated, and measurements are carried out.
UR - http://www.scopus.com/inward/record.url?scp=85065124152&partnerID=8YFLogxK
U2 - 10.1155/2019/4391474
DO - 10.1155/2019/4391474
M3 - Article
AN - SCOPUS:85065124152
SN - 1687-5869
VL - 2019
JO - International Journal of Antennas and Propagation
JF - International Journal of Antennas and Propagation
M1 - 4391474
ER -