Towards Versatile Embodied Navigation

Hanqing Wang, Wei Liang*, Luc Van Gool, Wenguan Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

With the emergence of varied visual navigation tasks (e.g., image-/object-/audio-goal and vision-language navigation) that specify the target in different ways, the community has made appealing advances in training specialized agents capable of handling individual navigation tasks well. Given plenty of embodied navigation tasks and task-specific solutions, we address a more fundamental question: can we learn a single powerful agent that masters not one but multiple navigation tasks concurrently? First, we propose VXN, a large-scale 3D dataset that instantiates four classic navigation tasks in standardized, continuous, and audiovisual-rich environments. Second, we propose VIENNA, a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model. Building upon a full-attentive architecture, VIENNA formulates various navigation tasks as a unified, parse-and-query procedure: the target description, augmented with four task embeddings, is comprehensively interpreted into a set of diversified goal vectors, which are refined as the navigation progresses, and used as queries to retrieve supportive context from episodic history for decision making. This enables the reuse of knowledge across navigation tasks with varying input domains/modalities. We empirically demonstrate that, compared with learning each visual navigation task individually, our multitask agent achieves comparable or even better performance with reduced complexity.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
Publication statusPublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

Fingerprint

Dive into the research topics of 'Towards Versatile Embodied Navigation'. Together they form a unique fingerprint.

Cite this